

Visegrad+ Grant No. 21920002 ECOLABELLING

Innovations in circular economy – environmental labels and declarations

Instruction for classes (exercises) Energy Star

Guidelines for exercises

Basic information – discussion

- Energy Star discussion of questions:
 - ✓ Try to describe what you think the Energy Star brand looks like?
 - ✓ Who owns the Energy Star brand?
 - ✓ What do you think the Energy Star brand represents?
 - ✓ Which products can be labeled Energy star?

Instruction for exercise

- Work in groups 1 goupe = one task
- Each group chooses one task:
 - ✓ Task 1 lighting
 - ✓ Task 2 smart house
 - ✓ Task 3 imaging technology
 - ✓ Task 4 white techniques

Instruction for task 1

- ➤ Task 1 Lighting
- Students will determine if products are eligible for the Energy Star label when they have:
 - ✓ Information on individual products

Bulb type	Parameters
Philips Hue White and Color ambiance 9,5W E27 PMO 2 pack starter pack	LED smart bulb, 9.5 W, E27, luminous flux 806 lm, supply voltage 230 V, dimmable, minimum chromaticity 2700K, maximum chromaticity 6500K, energy label A +, Service life 25,000 h
Philips Hue White Filament 7W E27 A60	LED smart bulb, 7 W, E27, luminous flux 550 lm, supply voltage 230 V, dimmable, minimum chromaticity 2100K, maximum chromaticity 2100K, energy label A +, Service life 15,000 h
Narva E27 / 60W / 230V industrial bulb	Manufacturer Narva, 60W, E27, luminous flux 630 lm, voltage 230V, chromaticity 2700K dimmable, energy class E

RZESZOW UNIVERSITY OF NORTHELING	HOBOM CA <u>J</u> Y KOVI SAD Technická univerzita v Košiciach	Vysoká škola technická a ekonomická IIII v Českých Budějovicích	Széchenyi Szekhenyi István Egyetem
 supported by Visegrad Fund • 		the Governments of Czechia, Hungary, tional Visegrad Fund. The mission of th on in Central Europe.	

✓ Criteria

Performance characteristics	Current criteria					
		Color index	rendering	Minimum efficacy lm/W)	lamp (initial	
Efficiency	Omnidifectional		<90	80		
Enciency			\geq 90		70	
	Directional		<90	70		
		≥ 90		61		
	Decorative	nta diffor		5 ostosonios ha	and on the	
Light output	Light output requirements differ for different categories, based on the incumbent incandescent bulbs. Most requirements are measured in lumens, but PAR, MR and MRX bulbs have requirements in center beam candlepower based on equivalency claim and beam angle.			easured in		
	Nominal CCT: 2200K*	, 2500K*	, 2700K, 3000	K, 3500K, 40	00/4100K,	
Corelated color temperature	5000K, 6500K					
	*Filament-style lamps o	nly	-			
Color quality	$CRI \ge 80$ and $R9 > 0$ for			601 1	• 1 4 4 4	
Lumen maintenance	LED: Bulb shall maintain minimum percentage of 0-hour light output after completion of the 6000-hr test duration, ranging from 86.7% - 95.8% depending on the claimed lifetime of the bulb.					
Bulb life	Minimum life rating of 10,000 hours for CFLs, 15,000 for omnidirectional and decorative LED, and 25,000 for directional LED bulbs.					
Dimming	Maximum and minimum and noise and must dim			mmer, as wel	l as flicker	
Warranty	Minimum warranty period of 2 years for bulbs with a life rating of < 15,000 hours, and minimum 3 year warranty for bulbs with a life rating \geq 15,000.					
Allowable base types	The range is limited to bulbs with the following standard ANSI basic types: E26, E26d, E17, E11, E12, G4, G9, GU10, GU24, GU5.3, and GX5.3.					
Start time	The bulb must light up and remain lit continuously for 750 milliseconds after the application of electricity.					
Run-up time	Bulb must reach 80% of	the stabi	lized light outp	out in $\leq 45 \sec \theta$	conds.	
Power factor	\geq 0.5 for CFL. \geq 0.6 for Omnidirectional LED bulbs with input power \leq 10 watts. \geq 0.7 for all other LED bulbs.					
Rapid cycle stress test	15000 on/off power cyc	les		0.1		
Dimensional requirements	The bulb must conform to the shape standards of the American National Standards Institute					
Elevated temperature testing	Endurance test at elevated temperature inside a recessed can or test rig maintained at 45 ° C or 55 ° C.		or test rig			

RZESZOW UNIVERSITY	HOBOM CA <u>T</u> Y OVI SAD Technická univerzita v Košiciach	Vysoká škola technická a ekonomická IIII v Českých Budějovicích	Stechenyi Istvan Egyetem
 supported by Visegrad Fund • 		y the Governments of Czechia, Hungary, ational Visegrad Fund. The mission of th ion in Central Europe.	

Instruction for task 2

- \succ Task 2 –smart house
- Students will suggest according to the picture which products can be installed if the house wants to obtain the Energy Star mark when they have the basic conditions for the award of the label
- > Every specific criteria students can find in the document:

https://www.energystar.gov/sites/default/files/National%20Program%20R equirements%20Version%203_Rev%2011.pdf

Instruction for task 3

- Task 3 imaging technology
- Students will determine if products are eligible for the Energy Star label when they have:
 - ✓ Criteria

Energy-Efficiency Criteria for Ac-Ac and Ac-Dc External Power Supplies in Active Mode- standard models

Nameplate Output Power (Pno)	Minimum Average Efficiency in Active Mode (expressed as a decimal)
$0 \text{ to} \leq 1 \text{ watt}$	\geq 0.480 * P _{no} + 0.140
> 1 to ≤ 49 watts	\geq [0.0626 * Ln (P _{no})] + 0.622
>49 watts	≥ 0.870

Nameplate Output Power (Pno)	Minimum Average Efficiency in Active Mode (expressed as a decimal)
$0 \text{ to} \leq 1 \text{ watt}$	\geq 0.497 * P _{no} + 0.067
> 1 to ≤ 49 watts	\geq [0.0750 * Ln (P _{no})] + 0.561
>49 watts	≥ 0.860

Energy-Efficiency Criteria for Ac-Ac and Ac-Dc External Power Supplies

\checkmark Information on individual products

Product	Parameters
Monitor PC	 Power consumption Pon 15.1 W, Total energy consumption (TEC) 48.6 kWh, Video input signals Analog RGB: 0.7 volts ± 5%, input impedance 75 ohms Temperature 0 ° C to 40 ° C (32 ° F to 104 ° F)
	Humidity 10% to 80% (no condensation)
Televison Sencor	 Power consumption: AC ~ 100-240V, 50/60 Hz Energy efficiency: 17 W / <0.5 W in standby mode Dimensions with stand: 439 x 302 x 146 mm Dimensions without stand: 439 x 268 x 79 mm Weight: 1.45 kg VESA: 100 × 100 Consumption in normal mode 17W Standby power consumption 0.5W
Own product	

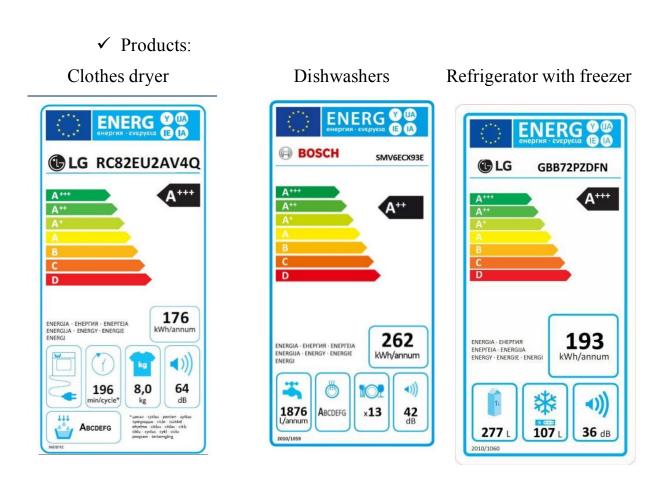
RZESZOW UNIVERSITY OF NORTHELESSITY	IOBOM CA <u>J</u> OVI SAD Technická univerzita v Košiciach	Vysoká škola technická a ekonomická IIII v Českých Budějovicích	Stechenyi Istvár Egyetem
 supported by Visegrad Fund • 		the Governments of Czechia, Hungary, tional Visegrad Fund. The mission of th ion in Central Europe.	

Instruction for task 4

- ➤ Task 4 white technique
- > Students determine whether or not the device is suitable for the Energy Star
 - ✓ Criteria for refrigerators and freezers

Product Type	Current Criteria Levels
Refrigerators and Refrigerator-Freezers (7.75 cubic feet or larger)	10% less measured energy use than the minimum federal efficiency standards
Freezer (7.75 cubic feet or larger)	10% less measured energy use than the minimum federal efficiency standards
Compact Refrigerators, Refrigerator- Freezers, and Freezers (Less than 7.75 cubic feet)	110% less measured energy use man the 1

\checkmark Criteria for a dishwasher


Equipment	Capacity	Current Criteria
Standard	2 8 place settings + 6 serving pieces	≤ 270 kWh/year ≤ 3.5 gallons/cycle
Compact	< 8 place settings + 6 serving pieces	≤ 203 kWh/year ≤ 3.10 gallons/cycle

RZESZOW UNIVERSITY OF TECHNOLOGY	10BOM CA <u>JI</u> Y OVI SAD Technická univerzita v Košiciach	Vysoká škola technická a ekonomická m v Českých Budějovicích	Széchenyi Széchenyi Széchenyi István Egyetem
 supported by Visegrad Fund • 		the Governments of Czechia, Hungary, tional Visegrad Fund. The mission of th ion in Central Europe.	

$\checkmark\,$ Criteria for Clothes dryer

Efficiency Requirements		
Product type	Combined Energy Factor (lbs/kWh)	
Vented Gas	3.48	
Ventless or Vented Electric, Standard (4.4 cu-ft or greater capacity)	3.93	
Ventless or Vented Electric, Compact (120V) (less than 4.4 cu-ft capacity)	3.80	
Vented Electric, Compact (240V) (less than 4.4 cu-ft capacity)	3.45	
Ventless Electric, Compact (240V) (less than 4.4 cu-ft capacity)	2.68	
Cycle Time Requirement		
Maximum Test Cycle Time	80 minutes	

	HOBOM CAJU IOVI SAD Technická univerzita v Košiciach	Vysoká škola technická a ekonomická v Českých Budějovicích	Stetchenyl Stetchenyl István Egyetem
 supported by Visegrad Fund • 		the Governments of Czechia, Hungary, tional Visegrad Fund. The mission of the on in Central Europe.	

Homework

- Each student will be given the task of finding out if they have products at home that are environmentally friendly or have the Energy Star label.
- > The products are divided into groups:
 - ✓ White technique
 - ✓ Imaging technology
 - ✓ Smart house
 - ✓ Other

References

- https://civildigital.com/wp-content/uploads/2014/03/Picture5.gif
- Light Bulb Key Product Criteria. Energy Star. https://www.energystar.gov/products/lighting_fans/light_bulbs/key_product_criteria . (accessed June 15, 2020).
- EU GPP criteria for display devices. European union. https://ec.europa.eu/environment/gpp/pdf/criteria/imaging/SK.pdf . (accessed March 12, 2020).
- Clothes Washers Key Product Criteria https://www.energystar.gov/products/appliances/clothes_washers/key_product_criteria
- Clothes Dryers Key Product Criteria https://www.energystar.gov/products/appliances/clothes_dryers/key_product_criteria
- Refrigerators & Freezers Key Product Criteria https://www.energystar.gov/products/appliances/refrigerators/key_product_criteria
- TheU.S. Licensed Professional'sGuide: Understanding the Roles and Requirements for Verifying Commercial Building Applications for ENERGY STAR® Certification, March 2020. Energy Star. https://www.energystar.gov/sites/ default/files/tools/LicensedProfGuide_March%202020.pdf (accessed April 12, 2020).
- ENERGY STAR Program Requirements for Computers Partner Commitments. ENERGY STAR Computers Final Version 7.1 Specification. https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Computers%2 0Final%20Version %207.1%20Specification_0.pdf (accessed Jan 21, 2020),

References: Ing. Monika Karková, PhD., Energy Star, Instruction for classes (exercises) for Pilot course on "Environmental labelling in circular economy", on-line event within the ECOLABELLING project (Innovations in circular economy – environmental labels and declarations), Visegrad+ Grant No. 21920002 (2019-2021), Poland, Rzeszów 05.02.2021. https://ecolabelling.prz.edu.pl/en/pilot-course-on-environmental-labelling-in-circular-economy

